Understanding proportionality

The development of proportional reasoning is essential, and it has many applications both within and outside mathematics. For example, students use percentages (calculating a certain percentage of a number and the value corresponding to 100 per cent) in situations relating to consumption, probability and statistics. In working with graphs for example, they make scale drawings and construct circle graphs. They look for unknown values in algebraic or geometric situations (e.g. similarity transformations, arc lengths, sector areas, unit conversion).

An understanding of proportions can be developed when students interpret ratios or rates in various situations, compare them qualitatively or quantitatively (e.g. "a is darker than b, " "c is less concentrated than d") and describe the effect of changing a term, a ratio or a rate.

Procedures students may use to deal with a proportionality situation

Once students are able to recognize a proportional situation, they can express it as a proportion. They then solve it by using multiplicative strategies that they will have developed (e.g. unit-rate method, factor of change, ratio or proportionality coefficient, additive or mixed procedure). A minimum of three ordered pairs is required to analyze a proportional situation using a table of values.
Examples :

Quantity of product A	2	4	6	10
Quantity of product B	6	12	18	$?$

Unit rate method :

Factor of change :

Proportionality coefficient :

Additive procedure :

If for 1 unit of product A, we have 3 units of product $B(12 \div 4)$, then for 10 units of product A, we will have $(10 \square \square 3)$ units of product B.

The factor that makes it possible for 4 to be increased to 10 is 2.5 ; we apply this factor to 12.

The factor that makes it possible for 4 to be increased to 12 is 3 ; we apply this factor to 10.

Since 4:12 $=6: 18$, then $\frac{4}{12}=\frac{6}{18}=\frac{4+6}{12+18}=\frac{10}{30}$

Graphic procedure :

(2 Secondary Cycle Two)

x	2	3	5	\ldots	16
$y=f(x)=3 x$	6	9	15	\ldots	48

$$
\begin{array}{ll}
f(x+y)=f(x)+f(y) & f(2+3)=f(2)+f(3) \\
f(k x)=k f(x) & f(8 \times 2)=8 \times f(2) \\
f(a x+b y)=a f(x)+b f(y) & f(2(3)+3(5))=2 f(3)+3 f(5)
\end{array}
$$

Types of proportionality

In order to fully understand the concept of proportionality, the students must work with a wide range of situations in various contexts. The table below lists several types of proportionality to consider when drawing up lesson plans.

[^0]

[^0]: 1. This typology is based on Vergnaud's theory, which was used by Christine Géron, Pierre Stegen and Sabine Daro in L'enseignement de la proportionnalité, Chapter 1, 2007, pp. 28, 30 and 32. [Online] 2010 [www.enseignement.be/index.php ?page=2382\&do_id=2712\&do_check=].
